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Abstract—Large amplitude vibrations, buckling and post-buckling analysis of heated angle-ply
laminated plates have been considered using the parabolic shear deformation theory. Strains due
to initial imperfections have also been retained using the von Karman type large deflection model.
Numerical results are obtained by using the single mode approach to simply-supported plates, thus
reducing five governing equations to a single nonlinear time differential equation involving quadratic
and cubic nonlinearities. The effects of initial imperfections and the temperature loading on the
response characteristics of the plate have been studied. Numerical results for isotropic and anti-
symmetric angle-ply plates have been presented and discussed.

INTRODUCTION

It is well known that composite materials have a definite advantage over metallic materials
in that they can be tailor-made to suit the load environment. However, due to their
anisotropic nature, analysis of such structures poses considerable mathematical problems
as compared to metallic material structures. Laminated plates made of composite materials
are the basic structural elements in many modern day industries, such as the aerospace and
automobile industries. It is needless to say that these structures are subjected to a variety
of loadings, including thermal loads. Thus, thermally induced deformation analysis of
laminated plates becomes an important consideration while designing.

Thermal buckling of laminated plates is considered to be a potential failure mechanism
in many structures. It may be seen from the available literature [see for example, Leissa
(1981)] that there is a lot written about the buckling of plates subjected to mechanical loads
as compared to that subjected to thermal loads. Buckling of laminated plates under thermal
loads is of recent origin. Stavsky (1963, 1975), Biswas (1976), Bargmann (1985), Tauchert
(1987), and Chen and Chen (1987) have considered the thermal buckling of plates using
analytical methods. Static stress and deformation analysis of plates subjected to thermal
loads has been given by Wu and Tauchert (1980) and Tauchert (1986). An excellent account
of the current knowledge on the static thermal problems of laminated plates may also be
found in the above article by Tauchert (1986).

It may be mentioned here that, as compared to the static analysis of plates, there is
not much work done on the nonlinear dynamic response of plates in thermal environments.
Pal (1973) presented the nonlinear static and dynamic analysis of heated orthotropic circular
plates. Huang and Tauchert (1988) have studied large deflection static analysis of plates
subjected to nonuniform thermal loading. Linear transient response of plates subjected to
thermal shock has been considered by Tauchert (1989).

Excepting the works of Tauchert (1986, 1987), Chandrashekhara (1990}, Chang (1990),
and a few others, it is clear from the above mentioned works that the thermal response of
plates has mostly been studied by using the classical Kirchhoff-Love plate theory equations.

t Current address: Ford Motor Company, Suite 800, Village Plaza, 23400 Michigan Avenue, Dearborn,
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Because the shear deformation effects play a major role in the accurate determination of
the response characteristics of laminated plates, it is appropriate to use some kind of shear
deformable plate theory to analyse the same. Chandrashekhara (1990), Thangaratnam et
al. (1989), and Chang (1990) have studied thermal buckling of laminated plates using the
finite element method, and hence, have treated more general buckling problems than one can
treat using the analytical methods. The other aspect that has not been covered adequately in
the literature is the influence of initial imperfections on the buckling and nonlinear response
of plates under temperature loadings.

In this paper, the nonlinear response of heated, symmetric, and antisymmetric angle-
ply laminated plates has been considered using the parabolic shear deformation theory of
Bhimaraddi and Stevens (1984) and Bhimaraddi (1987).

Using the assumed single mode solution for the lateral deflection, five equations of
motion of the problem have been reduced to a single equation governing the nonlinear
dynamic response of the plate. Initial imperfections have also been considered in the present
analysis in order to study their influence on the buckling and post-buckling response of
plates subjected to temperature loading. A brief description of the basic equations of the
parabolic shear deformation theory (PSD) will be presented next.

EQUATIONS OF MOTION OF THE PARABOLIC SHEAR DEFORMATION THEORY

Following Bhimaraddi and Stevens (1984), the displacement components are assumed
to be

d=u+ép—zw';, d=v+&f—zw’;, Ww=w, €))

472 d 472
f=z(l—ﬁ22) and 5*=d—f=<1—h—i>. )

In eqns (1), 4, § and w are the displacement of any point (x, y, z) of the plate in the x-, y-
and z-directions, respectively ; u, v and w are the displacements of any point on the middle
surface (z = 0) of the plate in the x-, y- and z-directions, respectively ; ¢ and y are the shear
rotations of any point on the middle surface of the plate in addition to the flexural rotations
w’ and w°; ( )" and ( )° indicate differentiation with respect to x and y, respectively; & is
the total thickness of the plate (and A4, 4., etc. are the thicknesses of the individual plies in
the case of a laminated plate). It may be seen that u, », w, ¢ and  are functions of (x, y)
only, and hence, the z-dependency of the displacement field has been eliminated by an ad
hoc assumption given in eqns (1).

Using the above displacement forms and incorporating the effects of initial imper-
fections in the von Karman type large deflection model, the strain—displacement relations
relevant to the current study are written as [sec Bhimaraddi (1989)]

where

e = U A EP — 2w+ 3IW T+ WWh,

gy = U+ EY° — 2w+ fw 2 + wows,
Yoy = UV +E(P°+Y) = 22w+ ww + wwi + wowh,
Ve = E*P5 7 =Y ©)

Using Hamilton’s principle, the following equations of motion in terms of stress-resultants
can be obtained [see Bhimaraddi (1989)]:

N;x+N;y = (N;x)’-'_(NIy)O+Plﬁ+P3d).‘P2wl’ (4a)
N+ N5, = (NLY +(N},)°+ P15+ Pyh — P, (4b)

M;x"'ng_Q-xx = (MIX)/*F(MI})O+P314+P6¢—P5W/, (4C)
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M;cy+va)y_Q—yy = (sz),'*'(M;y)o+P3ﬁ+PGJ;_P5wOa (4d)
M4 2MS+ My = q+Pw— Py (0" +W°) + Py (i +5°) + Ps(¢' —§°)
+ [(Nxx - NIx) (W/ + WIO) + (ny - N;cry) (WO + W(()))]’
+[(Nyy— NL) (W +wo) + (N, — N3 ) (W° + w)]°
+ (M) +2M5) " +(M),). (4e)
q in the last equation of (4) is the applied lateral load on the plate surface, and superposed
dots indicate differentiation with respect to time (7). It may be noticed here that the inertia
terms (P,, P,, etc.) have opposite signs, when compared with the earlier work of Bhimaraddi
(1987). This is so because in the earlier paper of Bhimaraddi (1987) the signs for inertia
terms were assigned to make sure that the mass matrix had positive diagonal terms.
Definitions for various stress-resultants and the associated boundary conditions are given
in Appendix A. Equations of motion in terms of displacement parameters (u, v, w, ¢ and
) can be written by using eqns (3), (A1) and (A2) in eqns (4) as follows:
A+ Aget™ + (A 12+ AV +2B6¢° + B " + By
=3B W'+ Byw™°— A4, (%W'z +w'wp) —A4 12(%WD2 +wwg)
— Ags(W W+ W Wi+ wWo)°+ (NL) +(NL)° + Prii+ Py — Poi',  (5a)
Agot" + A 0°° + (A 12+ Age)u’° + 2B+ B 9" + By d°°
= 3Boow' ™+ Brow” — Ao (w W wi)° — Ay (4w +wwi)°
— Ags(W W+ W W +wowo) +(N3) +(N3)°+ P+ Py — Pow°,  (5b)
2B, u/°+ B 0" + Bt +D=1 19"+ D™ — A4+ D12+ Do)y
=D W+ (D12+2Dg)w° — Bis(Gw +w wo)° — Bas (3w’ +wowi)°
— B s(W w+w Wi+ wowo) + (ML) + (ML)°+ Psii+ Ped— P,  (5¢)
2B,qv"°+ B " + Bygu® + Dslp” + Dy y°° — Assh +(D 4 D)9
= D yw**°+ (D1, +2D )W — B s (Gw* + W wp) — B (3w +wowg)y
— Bag(W W+ W Wi+ wowo)°+ (M) + (M},)°+ Psi+ Pof — P, (5d)
- 3Bl 6u”O - B26uoOO - BlG(‘%w‘l2 + W, M"’O)l0 - B26(_12"‘)oz + wow%)/o
_BIG(W/WO + wl W% + wowlo)l/__ 33261)/00 _BIGU’”_B]G(%W/Z +w/w/0 ’0
— Bag(we W WE) " — Bag(w' w"+w Wi+ wwy)™ — D16
_ (1312 + 2ﬁ66)(¢/oo + ‘/IIIO) _ Ezzl//ooo +D1 lle +2(D 12 + 2D66)wnoo + D22woooo
= g+ P — Py(#'+35°) + Po (i +6°) + Ps(¢' +°)
+[(Nex = N2 +w0) + (N — N W+ wh) + (ML) +(M3)°Y
+[(Noy = NG) W +wo) + (N, — N7 (W +wh) + (M) + (M,)°T°. (5¢)
The corresponding equations of motion for classical plate theory (CPT) can be obtained
from the above equations of motion using ¢ = ¥ = 0 (or alternately £ = 0) and those for
the Mindlin-type constant shear deformation theory (CSD) can be obtained by using & = z.
In addition, the shear correction factors are to be used in the case of CSD to correct the
deficiencies of constant shear distribution and non-zero shear stress values at the top and
bottom surface of the plate. Also, it is to be noted here that the present CSD is not exactly

the Mindlin theory, but it is similar to it as far as all the features of the Mindlin theory,
such as constant shear strain distribution and non-zero values of transverse shear strain

SAS 30:9-H
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and stress at the extreme fibres, are concerned. In what follows, the solution of the above
equations of motion are sought.

SOLUTION OF EQUATIONS OF MOTION

In the present paper, a closed form solution to a simply-supported plate is sought using
the assumed mode approach, similar to an earlier paper by Bhimaraddi (1989). Hence, the
following solution for the lateral displacement (w) has been assumed :

w = hp(t) sin Mx sin Ny (M = g; N= %) 6)
and the initial imperfections of the plate are assumed to be
wo = hpy sin Mx sin Ny. @)

Substituting eqns (6) and (7) in eqns (5a) and (5d) and equating the like powers of the
trigonometric terms one can obtain the following expressions for u, v, ¢ and ¥ for
antisymmetric angle-ply laminates :
u = a,hp sin Mx cos Ny+a,h*(p*+2pp,) sin 2Mx
+ash*(p*+2pp,) sin 2Mx cos 2Ny,
v = b hp cos Mx sin Ny+b,h*(p*+2pp,) sin 2Ny
+b3h*(p®+2pp,) cos 2Mx sin 2Ny,
¢ = ¢ hp cos Mx sin Ny+c,h*(p*+2pp,) sin 2Ny
+¢3h*(p*+2pp,) cos 2Mx sin 2Ny,
¥ = d hp sin Mx cos Ny+d,h*(p*+2pp,) sin 2Mx
+d;h*(p*+2pp,) sin 2Mx cos 2Ny. 8)
The above solutions have been obtained by neglecting the inertia terms appearing in eqns
(5a)—(5d), and we have also considered a constant temperature distribution (7 = T)
throughout the plate (in the x-, y- and z-directions). This means that the derivatives of the
temperature stress resultants are zero in eqns (5a)—(5¢). Further, for antisymmetric angle-
ply laminates, it has been observed that M}, = M), = N, = 0; and in addition to which,
M}, = 0 for symmetric angle-ply laminates when the temperature distribution is constant.
The expressions for a,,a,,...,d; can be obtained by solving the simultaneous equations
given in Appendix B. Having known all the displacement parameters, one can compute the
stress-resultants, using eqns (3), (A1), (A2) and (8), as
N, = 5,hp cos Mx cos Ny+h*(p*+2pp,) (s, cos 2Mx+ 55 cos 2Ny
+584cos 2Mx cos 2Ny +55),
N,, = s¢hp cos Mx cos Ny+h*(p*+2pp,) (s7 cos 2Mx +s4 cos 2Ny
+ 89 €OS 2Mx cos 2Ny +5,9),
N,, = s1,hp sin Mx sin Ny+h*(p*+2pp,)s,, sin 2Mx sin 2Ny,
M,, = s,3hp sin Mx sin Ny+h?(p?+2pp,)s,4 sin 2Mx sin 2Ny,
M

yy

= §,shp sin Mx sin Ny+h?(p2+2ppo)s.¢ sin 2Mx sin 2Ny,
M,, = s,7hp cos Mx cos Ny+h*(p*+2pp,) (515 cos 2Mx+ 5,4 cos 2Ny
+ 8450 COS 2Mx cos 2Ny +5s,,). (9)
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Expressions similar to M,,, M,, and M,, can also be written for M,,, M,, and M,,, but
they are not included here for the sake of brevity, and the expressions for s,—s,, are given
in Appendix B. From eqns (6), (8) and (9), it may be seen that the simply-supported
boundary conditions (w = M,, = u= N,, = M,, =y = 0) along the lines x = 0,a and
(w=M,,=v=N,, =M, =¢=0) along the lines y = 0, are satisfied automatically.
Substituting eqns (6), (7), (8) and (9) in eqn (5¢) and applying the Galerkin technique,
one can obtain the following equation from which the lateral displacement (p) can be
determined :

P+p+3epop’+ep® = u+x. (10)
The inertia terms associated with w only were retained in eqn (S¢) before applying the

Galerkin technique. In eqn (10), superposed dots indicate differentiation with respect to t,
and we have the following definitions for ¢, t, y and x:

[1—@)+2S£th%,]s22
522

P,+P,M*+P,N* ’

his,;

N T=QLt, Q[z‘ =
l:l —®+2§‘2*2th%]5'22
S22

&=

Op, 0

u = . K=
|:1—®+2§Bh2p%j|6‘22 [1—®+2s£h2p(2)]s22
S22 S22

2

’

a (*b
J j g sin Mx sin Ny dx dy
0 0

® S22
= = — . 1
s TO/Tc’ Tc nzx M2+n;y N2 (1 )

Q - a (b
hj J sin? Mx sin? Ny dx dy
0 Jo

In eqns (11), Q; is the linear frequency of the plate at any given temperature rise @ ; T is
the critical value of the temperature at which the plate buckles; ny, and n,, are the values
of NI, and N}, at unit temperature rise; and the expressions for s, and s,; are given in
Appendix B. In this paper, we have considered that the plate is subjected to temperature
rise only and there are no externally applied mechanical loads on the surfaces of the plate
(x =0).

Various plate theories such as the classical plate theory (CPT), parabolic shear defor-
mation theory of the present paper (PSD), Mindlin-type constant shear deformation theory
(CSD), and the original Mindlin shear deformation theory (MSD) have been compared in
this study in the context of nonlinear vibrations of plates. It has already been explained
how one can obtain the CPT and CSD from the PSD by simple substitutions. It may further
be noted here that even the original Mindlin theory can be deduced from PSD by substituting
¢ = m+wW, ¥ = Y,+w°,and { = zin all the relevant equations, and by using the following
equation of motion (in the lateral direction) instead of that given in eqn (4¢). Here ¢, and
¥, are the rotations corresponding to the MSD :

_Q—;x_Q-;y = q+P1W+[(Nxx_N;crx) (w,+w’0)+(ny—NIy)(wo+w?))]l
+[(Ney = NLYW +wo) + (N, = Ny ) (w* +wPI°. (12)

To check the correctness of the analytical procedure and the computer implementation of
the same, critical temperatures of various problems were compared with Boley and Weiner
(1960) for isotropic plates, and with Chandrashekhara (1990) and Tauchert (1987) for
laminated plates ; they were found to be in excellent agreement with the results quoted by
these references. To check the correctness of the nonlinear part of the analysis, results
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were compared with Bolotin (1964) for isotropic plates. For a square isotropic plate with
immovable edges the ¢ value in eqn (10) as obtained by Bolotin (1964) is 1.41 and the same
value was also obtained from the current study using the classical plate theory.

BUCKLING AND POST-BUCKLING RESPONSE OF PLATES AT ELEVATED TEMPERATURES

In this section we consider the static problem of eqn (10). In the absence of externally
applied loads (x = 0) and neglecting the inertia terms (§ = 0), the relation between tem-
perature (®) and deflection (p) can be written as

) _ P(522+2553h°pl) + 3553k °pop’ +5250°p° (13)
522(P+po) .
It may be seen from this relation that for perfect plates one is able to find the bifurcation
buckling temperature [7, as given in eqn (11)], and the post-buckling path is quadratic
in p. However, for imperfect plates there is no classical bifurcation buckling phenomenon,
and one has to trace the equilibrium paths by using eqn (13) at various temperature levels.
Numerical results were obtained for different thickness, aspect ratio, and lay-ups of
the plate. However, only a selected set of numerical results are presented here for the sake
of brevity. Table 1 gives critical temperature values for isotropic and laminated square
plates with different thickness and laminae arrangements. In the numerical results presented
here Graphite/Epoxy (T300/5208) with the following properties has been used as the plate
material in the case of composite laminated plates :

E,=181GPa, E,=103GPa, G, =G, =7.17GPa, G,, =6.21GPa,
fey =0.28, @, =0.02x10"°K~!, p=1389.23kgm">.

Here y,, is the Poisson’s ratio ; E, and E, are the Young’s moduli; G,,, G,; and G,, are the
shear moduli. In the case of an isotropic plate the Poisson’s ratio has been taken to be 0.3.

Table 1. Critical temperature (7,4, x 10%) values for perfect square with various
thickness values

Theory hfa =0.01 hja = 0.05 hla = 0.075 hia =0.1
Isotropic plate
PSD 1.26462 31.1936 68.9873 119.783
CSD 1.26446 31.0933 68.4981 118.313
MSD 1.26446 31.0933 68.4981 118.313
CPT 1.26533 31.6334 71.1751 126.534
Orthotropic plate
PSD 13.8686 327.509 687.733 1119.32
CsD 13.8607 323.183 669.021 1070.87
MSD 13.8607 323.183 669.021 1070.87
CPT 13.9027 347.567 782.025 1390.27
2-ply (45/—45) plate
PSD 10.6078 258.123 561.316 953.271
CSD 10.6032 255.451 548.807 917.635
MSD 10.6032 255.451 548.807 917.635
CPT 10.6199 265.498 597.370 1061.992
4-ply (45/—45/45/ —45) plate
PSD 20.8157 489.873 1024.13 1656.72
CSD 20.8056 484.316 1000.03 1594.16
MSD 20.8056 484.316 1000.03 1594.16
CPT 20.8699 521.748 1173.93 2086.99
6-ply (45/—45/45/—45/45/—45) plate

PSD 22.7047 532.110 1107.22 1781.28
CSD 22.6915 524.940 1076.48 1702.58
MSD 22.6915 524.940 1076.48 1702.58

CPT 22.7681 596.202 1280.70 2776.81
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Isotropic
7+ -l.l=0.l
%81.0

Temperature (6)
~
i

0.1
2 Po=0

0 | I T TR B |
0.2 06 10 1.4
Deflection (p)

Fig. 1. Temperature vs deflection curves for imperfect isotropic plates.

It may be noted from Table 1 that the predictions of CPT differ considerably from any
of the shear deformation theories for thicker plates. For example, differences of more than
25% can be seen for single, 4-ply and 6-ply plates of h/a = 0.1. It is interesting to note that
among the shear deformation theories CSD and MSD give identical values for critical
temperatures, and they are lower than those predicted by PSD. The maximum difference
between MSD (or CSD) and PSD is about 4% for 6-ply plates with A/a = 0.1. Since CSD
and MSD give identical results, only the values from CSD (or MSD) will be considered in
further comparison of various theories.

Figures 1 and 2 depict post-buckling curves for perfect and imperfect plates with
h/a = 0.1. Results obtained from PSD only are plotted in these figures since the results from
CSD (or MSD) did not differ by more than 4%, and, in fact, the difference diminished as
the value of plate imperfection increased. Further, differences between the post-buckling
response as predicted by CPT and PSD diminished as the plate imperfection was increased.
Hence, the maximum difference, as already observed in critical temperature values for
perfect plates did prevail. It may be observed from these figures that the plates are imper-
fection insensitive, as the equilibrium paths are stable in all the cases.

4-Ply (45/-45/45/-45)
h
- 2=0.1, %=1.o

Temperature (0)
S

0 1 1 1 1 L1
0.2 0.6 1.0 ’1.4
Deflection (p)

Fig. 2. Temperature vs deflection curves for imperfect 4-ply antisymmetric plates.
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LARGE AMPLITUDE FREE VIBRATION OF IMPERFECT PLATES AT ELEVATED
TEMPERATURES

From eqns (10) and (11) it may be seen that the consideration of an imperfect plate
results in the nonlinear time differential equation that includes both the quadratic and cubic
nonlinear terms. Using the method of multiple scales (Nayfeh and Mook, 1979), the
following amplitude (4) dependent frequency relation can be obtained :

Qup = Qu[1+3ueGu—po—3ueps) + 3e(1 — 10ep3) 47 (14
and p is given by

p = (1 —=3pepo+18u°e’pf — u’e) + £(uept — 3po — 31) A* + A cos (1Qn. + B)
+ 1e(po10uepd + u) A* cos 2(1Qny + B) +5&(6ep? + 1)A4° cos 3(1Qn + B), (15)

where A and B are to be determined using the initial conditions. Linear frequency (Q,psp,
Q; csp and Q;cpr) values obtained from various plate theories along with the values of ¢
and 3ep, [of eqn (10)] are shown in Table 2 for isotropic plates and in Table 3 for 4-
ply (45/—-45/45/ —45) plates with different imperfection (keeping ® = 0) and temperature
(keeping p, = 0) values.

In general, it may be seen from these tables that frequency increases with increasing
values of p, and decreases with increasing values of ®, as it should be if one observes the
frequency expression in eqns (11). Comparing the frequency values predicted by various
theories, it may be observed from these tables that as the temperature level increases, the
difference between the various theories also increases. For example, for ® = 0 the difference

Table 2. Values of linear frequency (Qipsp, Qicso, Qicpr)t and the coefficients of the
nonlinear terms (¢ and 3¢p,) for various temperatures (@ and p, = 0) and imperfections
(po and O = 0) of square isotropic plates

Qiesp Qiesp Qi cer 3epo [
Po=0 5.49908 5.46526 5.65192 0.0 1.390433733
=1/10 5.57502 5.54166 5.72583 0.405844224  1.352813573
=1/3 6.29155 6.26201 6.42557 1.062222561  1.062222561
=1/2 7.15984 7.13389 7.27788 1.230314918  0.820209945
=1.0 10.6927 10.6753 10.7721 1.103265649  0.367755216
0=0 5.49908 5.46526 5.65192 0.0 1.390433733
=1/4 4.76235 4.72324 4.93804 0.0 1.853911644
=1/2 3.88844 3.84045 4.10174 0.0 2.780867466
= 3/4 2.74954 2.68125 3.04373 0.0 5.561734932
h? E

g

Nondimensional using Q3 = — ——2—— .
T 8 %% a‘ p(l —”xy#yx)

Table 3. Values of linear frequency (Qipsp, Qicsps Qicer)t and the coefficients of the
nonlinear terms (¢ and 3¢p,) for various temperatures (@ and p, = 0) and imperfections
(po and ® = 0) of 4-ply (45/—45/45/ —45) plate

Qipsp Qiesp Qi cpr 3epo [

Po= 14.4382 14.1629 16.2050 0.0 1.238145630
=1/10 14.6158 14.3440 16.3635 0.362467927  1.208226425
1/3 16.3039 16.0604 17.8879 0.970985349  0.970985349

=1/2 183715 18155 197914  1.147087659  0.764725106

=10 269197 267713 279105  1.068505661 0.356168554

@=0 144382 141629  16.2050 0.0 1238145630

=1/4 125038 121850  14.5081 0.0 1650860840

=12 102093 9.81623  12.5845 0.0 2.476291260

=3/4 721909  6.65156  10.30801 0.0 4.952582516
r*  E,

Nondimensional using Q2 = — ————>—— .
T g %o a‘ p(l_'”xyuyx)
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between CSD and PSD is about 1.9% (Table 3), whereas for ® = 0.75 it is about 7.9%.
Such differences for CPT are 12% and 43% when compared with PSD. However, it has
been observed that for a given temperature level (as in Tables 2 and 3) the difference
between various theories decreases as the imperfection value of the plate increases. For
example, referring to Table 3, at ® = 0 the difference between CPT and PSD is about 12%
for p, = 0, whereas it is only about 4% for p, = 1.0.

Further, one may observe from Tables 2 and 3 that the value of ¢ decreases with
increasing value of imperfection, and obviously, the value of 3¢p, increases as p, increases.
It is evident from these tables that, in general, ¢ and 3&p, can assume values far greater than
unity, as may be seen for greater temperature levels. This means that the present nonlinear
plate equation (10) is one of strongly nonlinear type.

The basic assumption in obtaining the nonlinear frequency relation (14) is that the
values of & and 3gp, are less than unity. In view of this, for strongly nonlinear problems
eqn (14) may not predict correct frequency values. To overcome this difficulty, the exact
value of frequency can be obtained, irrespective of whether eqn (10) is strongly nonlinear
or not, by using the procedure outlined in Chapter 2 of Nayfeh and Mook (1979) and also
by Singh et al. (1991). A brief description of this procedure is given in what follows next.
The total energy of the system corresponding to eqn (10) can be written as

Hyo = 1p*+3p*+epop’ +iep* —up. (16)

Since eqn (10) has quadratic and cubic nonlinearities the maximum amplitude values in the
positive half of the cycle (4) and in the negative half of the cycle (4F) are not equal [for
details see Singh er al. (1991)]. At these maximum amplitude values, velocity of motion
becomes zero and since the total energy of the system is constant, one can write the
following :

Hy = —pd+34* and Hy = —pA+34%+epoA> +ied”. a1

In the above H; is the energy of the corresponding linear system. Equating (16) and the
last of eqn (17) one can obtain the following equation for velocity :

p* = —2u(A—p)+ (4’ —p*) +26po(4° — p*) + 36(4* —p*). 18)

One can obtain the two maximum amplitude values by solving for the two roots of the
homogeneous part of eqn (18). It is obvious from eqn (18) that one extremum amplitude
(at which velocity is zero) is equal to A4 and let this be assumed to be of the positive side.
The maximum amplitude value in the negative side (4¥) can be obtained as a real root
(A*) of the following equation, which can be obtained by reducing the order of the
homogeneous equation (18) for a known root A4 :

2(A+3epgAr +eA® —p) — (1 +6epoA+3eA) A* +2(po+ A)eA*? —1ed*> = 0. (19)

Integrating eqn (18) one can write the nonlinear to linear frequency ratio as

QNL j \/2HL+2up P’ 4[ \/2HL+2NP —p’
dp dp

\/ZHNL+2up —p?—2epop® — V2Hy +2up—p*—2epop* —iep*

(20

In general, integration in eqn (20) cannot be evaluated exactly; however, one can use
numerical integration techniques to obtain the value of the frequency ratio. In this work,
the Wedle’s seven point integration method has been used. Nonlinear to linear frequency
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Table 4. Nonlinear to linear (Qy./Q,) frequency ratios for different amplitude (4) values
obtained by using eqns (17) and (19) for square plates (h/a = 0.1, 8 = 0, PSD results)

Po=1/10 Po=1/3 Po=1/2
A egn (17) eqn (19) eqn (17) eqgn (19) eqn (17)  eqn (19)
Isotropic plate
0.0 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000
0.2 1.0176 1.0185 0.9971 0.9980 0.9871 0.9856
0.4 1.0702 1.0772 0.9885 1.0107 0.9483 0.9505
0.6 1.1579 1.1738 0.9742 1.0808 0.8837 0.9704
0.8 1.2808 1.2984 0.9541 1.2041 0.7932 1.0812
1.0 1.4387 1.4417 0.9282 1.3511 0.6769 1.2241
4-ply (45/—45/45/—45) plate
0.0 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000
0.2 1.0159 1.0167 0.9989 0.9997 0.9895 0.9885
04 1.0637 1.0692 0.9954 1.0135 0.9582 0.9616
0.6 1.1434 1.1558 0.9897 1.0751 0.9059 0.9774
0.8 1.2549 1.2688 0.9816 1.1854 0.8327 1.0734
1.0 1.3983 1.4000 0.9713 1.3207 0.7385 1.2051

Table 5. Nonlinear to linear (Qn,/Q,)t frequency ratios for different amplitude (4) values obtained by using eqn
(19) for various theories (a/b = 1.0, hla = 0.1, 0 = 0)

Po=1/10 Po=1/3 pPo=1/2
A PSD CSD CPT PSD CSD CPT PSD CSD CPT
Isotropic plate
0.0 1.000 0.994 1.027 1.000 0.995 1.021 1.000 0.996 1.017
0.2 1.019 1.013 1.045 0.998 0.993 1.020 0.986 0.982 1.003
0.4 1.077 1.072 1.102 1.0107 1.006 1.034 0.951 0.946 0.972
0.6 1.174 1.169 1.197 1.0808 1.076 1.101 0.971 0.966 0.990
0.8 1.298 1.294 1.319 1.2041 1.201 1.221 1.081 1.078 1.095
1.0 1.442 1.438 1.460 1.3511 1.348 1.365 1.224 1.222 1.235
4-ply (45/—45/45/ —45) plate
0.0 1.000 0.982 1.120 1.000 0.985 1.097 1.000 0.988 1.077
0.2 1.017 0.998 1.135 0.999 0.984 1.10 0.989 0.976 1.070
04 1.069 1.052 1.182 1.014 0.998 1.116 0.962 0.947 1.055
0.6 1.156 1.140 1.260 1.075 1.061 1.169 0.978 0.964 1.068
0.8 1.269 1.255 1.363 1.185 1.174 1.265 1.073 1.063 1.144
1.0 1.400 1.387 1.485 1.321 1.311 1.389 1.205 1.197 1.261

tQ, corresponds to the PSD value.

ratios obtained using eqns (20) and (14) are given in Table 4. It is interesting to note from
this table that the frequency ratios, as predicted by the perturbation method, decrease with
increasing amplitude for p, > 1/3, whereas this is not the case with the exact method.

Thus, it may be said here that the perturbation method predicts softening behavior for
Do values >1/3, whereas the exact method indicates that the plate behavior is of the
hardening type, except for lower amplitudes. Further, it may be seen that for a 4-ply plate
with p, = 1/3 (Table 3) both the values of ¢ and 3gp, are equal but less than unity. Even in
such a case, the predictions of the perturbation method are in contradiction to the exact
values. However, it has also been observed that both of the methods predict comparable
results for lower values of imperfections (< 1/10) and amplitudes. In these cases, it was
seen that the values of ¢ were slightly greater than unity, but the values of 3¢p, were much
smaller than .

Tables 5 and 6 show the frequency ratios obtained by using the exact method for
various plate theories. In general, it may be noted the CSD values are lower and CPT values
are higher when compared with the PSD results. This is consistent with their prediction of
linear frequencies and critical temperature values. The difference in the frequency ratios
predicted by various theories diminishes as the amplitude of vibration becomes larger, thus
indicating that the shear deformation effects do not prevail at these amplitudes because it
has been taken over by the greater predominance of the membrane action.
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Table 6. Nonlinear to linear (Qy./Q)t frequency ratios for different amplitude (4) values obtained by using eqn
(19) for various theories (a/b = 1.0, hfa = 0.1, p, = 0)

0=1/4 0=1/2 0=3/4
A PSD CSD CPT PSD CsSD CPT PSD CSD CPT
Isotropic plate
0.0 1.000 0.922 1.037 1.000 0.988 1.055 1.000 0.975 1.107
0.2 1.027 1.019 1.063 1.041 1.029 1.094 1.080 1.057 1.180
0.4 1.105 1.097 1.138 1.153 1.143 1.201 1.287 1.267 1.372
0.6 1.222 1.215 1.252 1.318 1.309 1.360 1.569 1.553 1.640
0.8 1.368 1.362 1.395 1.517 1.509 1.554 1.893 1.880 1.953
1.0 1.535 1.529 1.559 1.739 1.732 1.772 2.242 2.230 2.293
4-ply (45/—45/45/—45) plate
0.0 1.000 0.975 1.160 1.000 0.962 1.233 1.000 0.921 1.428
0.2 1.025 1.000 1.181 1.036 1.000 1.262 1.071 0.998 1.479
0.4 1.094 1.071 1.242 1.138 1.104 1.347 1.259 1.197 1.621
0.6 1.200 1.179 1.337 1.287 1.257 1.476 1.518 1.466 1.831
08 1.333 1.314 1.458 1.470 1.444 1.639 1.818 1.775 2.088
1.0 1.486 1.469 1.600 1.675 1.652 1.826 2.142 2.105 2.377

1Q; corresponds to the PSD value.

Table 7. Nonlinear to linear (Qy, /) frequency ratios for different amplitude (A4) values obtained
by using eqn (19) for various ply arrangementst (a/b = 1.0, h/a = 0.1, p, = 1/10)

0=0 0=1/4

2-ply 4-ply 6-ply 2-ply 4-ply 6-ply
A (11.19)% (14.62) (15.14) (9.75) (12.71H) (13.16)
0.0 1.000 1.000 1.000 1.000 1.000 1.000
0.2 1.027 1.017 1.016 1.048 1.031 1.029
04 1.116 1.069 1.065 1.145 1.089 1.083
0.6 1.260 1.156 1.146 1.324 1.196 1.183
0.8 1.436 1.269 1.252 1.543 1.338 1.317
1.0 1.632 1.400 1.376 1.781 1.501 1.472

1 Plies are arranged alternately at +45° (e.g. 4-ply is 45/ —45/45/—45).
} Nondimensionalized linear frequency values are given in parentheses.

Table 7 shows frequency ratios for an imperfect plate with different lay-ups. Here an
angle ply plate (with angle = 45°) has been considered with three lay-up arrangements. It
may be seen from this table, as well as from Tables 5 and 6, that the frequency ratios
decrease with increasing values of p, and increase with increasing values of @, indicating
that the nonlinear effects are most pronounced at elevated temperatures of imperfect plates.
Also, it may be seen from this table that the 2-ply arrangement produces higher frequency
ratios followed by 4-ply plates. This indicates that the nonlinear effects are higher in 2-ply
antisymmetric plates as compared to 4- and 6-ply plates.

CONCLUSIONS

Large amplitude vibration of imperfect angle-ply plates at elevated temperatures has
been considered using the parabolic shear deformation theory. It has been shown that the
other theories, such as the classical plate theory and the constant shear deformation theory
due to Mindlin can be obtained from the present parabolic shear deformation theory.
Numerical results showed that the classical plate theory is inadequate to obtain the linear
frequency values and the critical temperatures of plates, whereas it predicts good results in
the case of large amplitude vibrations. The two shear deformation theories differ increasingly
while predicting the linear frequencies of heated plates with increasing temperature levels.
The increasing values of the frequency ratios indicate that the nonlinear effects are more
predominant in imperfect plates and for plates at elevated temperatures. Numerical results
also demonstrated that the nonlinear effects are higher in 2-ply antisymmetric plates as
compared to 4- and 6-ply plates.
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APPENDIX A
In this appendix the stress-resultants and the associated boundary conditions pertinent to the equations of

motion (4) and (5) are given. Following Bhimaraddi (1987), the definitions for stress-resultants appropriate to
the current study are written as

Ciu Ciz Cig|[ess

2
N, M, A—lyy =_[;./2 Ci, Cyun Cyuiley, (1 -z &dz, (Ala)
ny Mxy Mxy Cis Cis Cogs Vxy
'h 2 hi2
Qxx = szé* dZ, ny = Tyzé* dZ. (Alb)
~h{2 —hj2

In a similar fashion, one can write the stress-resultants due to temperature change as

N M M 42 Cii Ci Cig] [%
N, M, MyTy =j Ciy Cun Cyl|la, |0 —z &Tdz (Alc)

)

NIy M::v M:y Cis Cis Ces Oy

In the above equations, T(x, y, z) is the temperature change from the ambient value and «,,, a,, and' a,, are the
coefficients of thermal expansion. The definition for integrated elastic stiffness and inertia terms are given as

hi2
(4,B;B;D;DyD;) = J:h/z (1z£222EEY)C;, dz,

2 h/2
1;11 = I Ci/é*z dz, (P\P,PiP,PsP¢) =J p(1z¢z%zEE7) dz. (A2)
—hy2 42

Here p is the mass density of the plate material. The associated boundary conditions along the line x = constant
require that at least one member of the following six pairs must be specified :
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(Nxx —N;) ory, (ny—‘N;) orv, (Mx.x "H:;rx) or d’a
(ﬁxy—ﬂg)or*//, (Mxx—'M;r];) or W’, Qxx orw (ABa)

and those along the line y = constant require that one member of the following six pairs must be specified :
(N,—Niyoru, (N,—N}jyors, (M, ,—MI)ord,
(M,—M})ory, (M,,—M;)Yorw®, Q,orw (A3b)
where we have the following definitions for Q.. and Q,,:

Qo= (M —MLY +(M,—MLY ~ (N~ NIOW — (N~ NI — Pyii— Ps -+ P,
ny = (Myy_M)'g:)+(Mxy‘M;l:v)’_(ny_"N:v)w/_(Nyy*N;{v)w_PZU”PSll’+P4w (A4)

APPENDIX B
Expressions for ay, a,, . . ., dy appearing in (11)

AMP+ AN (Ap+Ag)MN 2B, MN B M+ B, N? a; i
AgM?+ A N> B, M2 By N? 28, MN b, £
Symm. DM+ D N*+ Ay (Dry+Dy)MN e} TS
566M2+D-22N2+j55 d, Ja
'AUMQ‘*'A%NZ A+ Ag)MN 2B MN B\ M+ B, N? i
AgsM*+A,,N? B M*+ B, N 28, MN a, fs
. A = .
Symm. 5,,M’+D“N2+f D12+ D) MN bs _ Js
~ e T2l
B+ boni+ 22| Lol LA
4 B 0 0 ]
11 16
= A a; S
By Det+—=2 0 0
am’ d, fio
0 0 Ay, B, bl = | ful >
i3 5 Aus [ Sz
-0 8 Bay Dy 4N2_

where f\—f}, are given by

fi=3BM’N+ByN°, f,=3B,,MN*+B(M*, fi=D,M°+(D,,+2D:)MN?,
fe=DuN+ (D +2DQ)MN, fs= &4 M3+ 4,MN* +24,,MND),
So =15 (A N>+ A NM? +24NM?), ;=% BB\ (M N+ B,N°), fy = 15 (BN’ M+ B, M),
1 1 -
f9 = W(AlzNzM‘AnMS)a fm =W(BZ6N2M—B!6M3)9

1

t
Su= W(AlezN"Azst)a fxz =W

(B eM*N—B,,N*.

Expressions for s,~s,, are given as
) = AnaM+A4,,b N=2B,MN+B,((c, N+d\ M), s;=A,Qa,M+M?*[8)—A4,,N*/8+28d,M,
Sym= — A, M?*8+2A4,,Nb,+4,,N¥8+28,c,N,
5o =241,@ M~ A MY8+24,,b;N— A, ,NY 8+ 28, (c;N+d; M),
ss=A, M8+ A, ;N8, 54=A,a,M+Ayb,N—2B,;MN+ Byrs(c, N+d, M),
s7=A,,(2a,M+M?*8)— A, N*/8+ 2B, d, M, s53=—A,,M*[8+24,,Nb,+ A, N?/8+2B,4,N,
So == 24 1283 M — Ay, M B+ 24,6, N— A, N2 8428, (e, N+ ds M),

Sio= A1 M8+ A, N8, 5y, =B ,M*+ B, N*—dgea N—Ayb M—B s, M—B,d,N,

S13 = AgeMN/4~2Aca; N—2A4sb M —28,cc;M—28,:d,N,

Sy3= ~Dy M*~D,N*+Bsa,N+ B, ;b M+D,,c,M+D,,d,N,

$14 = —BsMN/A4+2B,a:N+2B,sbsM+2D,,c;M+2D,,d;N,

Sis= —D;M?>— D3N+ Byt N+ Bygh M+ D0, M+ D 5,d (N,
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S16 = —B,sMN/4+2B,ia;N+2B,b; M+ 2D ,e,M +2D,,d;N,

$17= —Bsa,M—BysbN+2D¢MN—Ds(c,N+ D, M),

s15 = —B1sQa,M+M?*/8)+ B, N*/8—2D¢ed,M, 5,5 = B,cM?*/8—2B;sNby,—B,sN*/8—2D¢4c;, N,
$20 = —2Bsa;M+B,(M?*/8—2B,b;N+ B,y N*/8—2D¢s(csN+d; M),

Sg1 = —B,oM?8—B,N*8, 55, = —5,,M?—s,,N*+25,,MN,

523 = ($oM2—5; M2 —5,M?/2+5, ,MN/2+25sM?* — ;N2 +5; N —5,N?[2+25,,N*+5,,MN/2)/2.



